Write a Program which checks if two Strings are Anagram or not?
using System.CodeDom.Compiler;
using System.Collections.Generic;
using System.Collections;
using System.ComponentModel;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Runtime.Serialization;
using System.Text.RegularExpressions;
using System.Text;
using System;
class Solution
{
// Complete the makeAnagram function below.
static string makeAnagram(string a, string b)
{
char[] char1 = a.ToLower().ToCharArray();
char[] char2 = b.ToLower().ToCharArray();
Array.Sort(char1);
Array.Sort(char2);
string NewWord1 = new string(char1);
string NewWord2 = new string(char2);
if (NewWord1 == NewWord2)
{
return ("Anagrams");
}
else
{
return ("Not Anagrams");
}
}
static void Main(string[] args)
{
// TextWriter textWriter = new StreamWriter(@System.Environment.GetEnvironmentVariable("OUTPUT_PATH"), true);
Console.Write("Enter first word:");
string a = Console.ReadLine();
Console.Write("Enter second word:");
string b = Console.ReadLine();
string res = makeAnagram(a, b);
Console.WriteLine(res);
Console.ReadLine();
//textWriter.WriteLine(res);
//textWriter.Flush();
//textWriter.Close();
}
}
Write a Program to make two Strings are Anagram.
Alice is taking a cryptography class
and finding anagrams to be very useful. We
consider two strings to be anagrams of each other if the first string's letters
can be rearranged to form the second string. In other words, both strings must
contain the same exact letters in the same exact frequency For example, bacdc and dcbac are anagrams,
but bacdc and dcbad are not.
Alice decides on an encryption scheme
involving two large strings where encryption is dependent on the minimum number
of character deletions required to make the two strings anagrams. Can you help
her find this number?
Given two
strings, and , that may or may not be of the same length,
determine the minimum number of character deletions required to
make and anagrams. Any characters can be deleted from
either of the strings.
For example, if and ,
we can delete from string and from
string so that both remaining strings are and which
are anagrams.
Function Description
Complete the makeAnagram function in the editor below. It must
return an integer representing the minimum total characters that must be
deleted to make the strings anagrams.
makeAnagram has the following
parameter(s):
· a: a string
· b: a string
Input Format
The first line contains a single
string, .
The second line contains a single string, .
The second line contains a single string, .
Constraints
· The
strings and consist of lowercase English alphabetic
letters ascii[a-z].
Output Format
Print a single integer denoting the
number of characters you must delete to make the two strings anagrams of each
other.
Sample Input
cde
abc
Sample Output
4
Explanation
We delete the following characters
from our two strings to turn them into anagrams of each other:
1.
Remove d and e from cde to get c.
2.
Remove a and b from abc to get c.
We must delete characters
to make both strings anagrams, so we print on a new line.
using
System.CodeDom.Compiler;
using
System.Collections.Generic;
using System.Collections;
using System.ComponentModel;
using
System.Diagnostics.CodeAnalysis;
using
System.Globalization;
using System.IO;
using System.Linq;
using System.Reflection;
using
System.Runtime.Serialization;
using
System.Text.RegularExpressions;
using System.Text;
using System;
class Solution {
// Complete the makeAnagram function
below.
static int makeAnagram(string a, string b)
{
char[] aO = a.Trim().Replace(" ", "").ToLower().ToCharArray();
Array.Sort(aO);
char[] bO = b.Trim().Replace(" ", "").ToLower().ToCharArray();
Array.Sort(bO);
ArrayList aOrignal = new ArrayList();
aOrignal.AddRange(aO);
ArrayList bOrignal = new ArrayList();
bOrignal.AddRange(bO);
Dictionary<char, int> aDic = new Dictionary<char, int>();
foreach (char item in aOrignal)
{
if (aDic.ContainsKey(item))
aDic[item]++;
else
aDic.Add(item, 1);
}
Dictionary<char, int> bDic = new Dictionary<char, int>();
foreach (char item in bOrignal)
{
if (bDic.ContainsKey(item))
bDic[item]++;
else
bDic.Add(item, 1);
}
foreach (KeyValuePair<char, int> kvp in aDic.ToList())
{
if (aOrignal.Contains(kvp.Key) && bOrignal.Contains(kvp.Key))
{
aDic[kvp.Key] -= 1;
bDic[kvp.Key] -= 1;
for (var i = 1; i < kvp.Value; i++)
{
if (aDic.ContainsKey(kvp.Key) && bDic.ContainsKey(kvp.Key))
{
if (aDic[kvp.Key] > 0 && bDic[kvp.Key] > 0)
{
aDic[kvp.Key] -= 1;
bDic[kvp.Key] -= 1;
}
}
}
}
}
int count = 0;
foreach (KeyValuePair<char, int> kvp in bDic)
{
count += kvp.Value;
}
foreach (KeyValuePair<char, int> kvp in aDic)
{
count += kvp.Value;
}
return (count);
}
static void Main(string[] args) {
TextWriter textWriter = new
StreamWriter(@System.Environment.GetEnvironmentVariable("OUTPUT_PATH"), true);
string a =
Console.ReadLine();
string b = Console.ReadLine();
int res = makeAnagram(a,
b);
textWriter.WriteLine(res);
textWriter.Flush();
textWriter.Close();
}
}
Alternating Characters
You are given a string containing
characters and only. Your task is to change it into a
string such that there are no matching adjacent characters. To do this, you are
allowed to delete zero or more characters in the string.
Your task is to find the minimum
number of required deletions.
For example, given the string ,
remove an at positions and to
make in deletions.
Function Description
Complete the alternatingCharacters function in the editor
below. It must return an integer representing the minimum number of deletions
to make the alternating string.
alternatingCharacters has the
following parameter(s):
· s: a string
Input Format
The first line contains an
integer , the number of queries.
The next lines each contain a string .
The next lines each contain a string .
Constraints
· Each
string will consist only of characters and
Output Format
For each query, print the minimum
number of deletions required on a new line.
Sample Input
5
AAAA
BBBBB
ABABABAB
BABABA
AAABBB
Sample Output
3
4
0
0
4
Explanation
The characters marked red are the
ones that can be deleted so that the string doesn't have matching consecutive
characters.
AAAA ->A (3
deletions)
BBBBB -> B (4
deletions)
ABABABAB -> (0 deletion)
BABABA -> BABABA (0 deletion)
AAABBB -> AB (4 deletion)
The problem is pretty simple. One straight
forward solution can be given as follows.
If there are N consecutive same character delete N-1 out of those N characters.
Which will result into a string, in which no two consecutive characters will be the same. See the implement of the setter for the more details.
If there are N consecutive same character delete N-1 out of those N characters.
Which will result into a string, in which no two consecutive characters will be the same. See the implement of the setter for the more details.
using System.CodeDom.Compiler;
using System.Collections.Generic;
using System.Collections;
using System.ComponentModel;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Runtime.Serialization;
using System.Text.RegularExpressions;
using System.Text;
using System;
class Solution
{
// Complete the alternatingCharacters function below.
static int alternatingCharacters(string s)
{
string str = s;
int ans = 0;
for (int i = 0; i < s.Length - 1; i++)
{
if (str[i] == str[i + 1]) // If two consecutive characters are the same, delete one of them.
ans++;
}
return ans;
}
static void Main(string[] args)
{
//TextWriter textWriter = new StreamWriter(@System.Environment.GetEnvironmentVariable("OUTPUT_PATH"), true);
Console.WriteLine("Enter a number you want to test :");
int q = Convert.ToInt32(Console.ReadLine());
for (int qItr = 0; qItr < q; qItr++)
{
Console.WriteLine("Enter the string:");
string s = Console.ReadLine();
int result = alternatingCharacters(s);
Console.WriteLine("The no character need to delete is :" + result);
// textWriter.WriteLine(result);
}
Console.ReadLine();
//textWriter.Flush();
//textWriter.Close();
}
}
Sherlock and the Valid String
Sherlock considers a string to
be valid if all characters of the string appear the
same number of times. It is also valid if he can
remove just character at index in the string, and the
remaining characters will occur the same number of times. Given a string ,
determine if it is valid. If so,
return YES, otherwise return NO.
For example, if , it is a valid
string because frequencies are . So is because we can remove
one and have of each character in the remaining string.
If however, the string is not valid as we can
only remove occurrence of . That would leave character
frequencies of .
Function Description
Complete the isValid function in the editor below. It should
return either the string YES or the string NO.
isValid has the following
parameter(s):
· s: a string
Input Format
A single string .
Constraints
· Each character
Output Format
Print YES if
string is valid, otherwise,
print NO.
Sample Input 0
aabbcd
Sample Output 0
NO
Explanation 0
Given , we would need to remove
two characters, both c and d aabb or a and b abcd, to make it valid.
We are limited to removing only one character, so is invalid.
Sample Input 1
aabbccddeefghi
Sample Output 1
NO
Explanation 1
Frequency counts for the letters are
as follows:
{'a': 2, 'b': 2, 'c': 2, 'd': 2, 'e':
2, 'f': 1, 'g': 1, 'h': 1, 'i': 1}
There are two ways to make the valid
string:
· Remove characters
with a frequency of : .
· Remove characters
of frequency : .
Neither of these is an option.
Sample Input 2
abcdefghhgfedecba
Sample Output 2
YES
Explanation 2
All characters occur twice except
for which occurs times. We can delete one instance
of to have a valid string.
Solution
The problem domain only encompasses
the ascii chars a-z so this is easy we just keep track of the occurences of the
letters and then check if more than one character occurs a different number of
times than the rest. The implementation is straight forward and just requires
counting and then checking if the conditions apply to the resulting count.
using System.CodeDom.Compiler;
using System.Collections.Generic;
using System.Collections;
using System.ComponentModel;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Runtime.Serialization;
using System.Text.RegularExpressions;
using System.Text;
using System;
class Solution
{
// Complete the isValid function below.
static string isValid(string s)
{
string str=s;
int[] a = new int[26];
int temp=0;
int i = 0;
for(int j=0;j<str.Length; j++)
{
a[str[j] - 97]++;
}
for (i = 0; i < 26; i++)
{
if (a[i] != 0)
{
temp = a[i];
break;
}
}
int flag = -1;
for (i = 0; i < 26; i++)
{
if (a[i] != 0)
{
if (temp - a[i] == 1)
{
if (flag == -1)
{
flag = 0;
}
else
{
flag = 1;
}
if (a[i] != 1)
{
temp = a[i];
}
}
else if (a[i] - temp == 1)
{
if (flag == -1)
{
flag = 0;
}
else
{
flag = 1;
}
if (a[i] != 1)
{
temp = a[i];
}
}
else if (Math.Abs(temp - a[i]) > 1)
{
if (flag == -1)
{
flag = 0;
continue;
}
flag = 2;
break;
}
}
}
if (flag == -1 || flag == 0)
{
return("YES");
}
else
{
return("NO");
}
}
static void Main(string[] args)
{
//TextWriter textWriter = new StreamWriter(@System.Environment.GetEnvironmentVariable("OUTPUT_PATH"), true);
string s = Console.ReadLine();
string result = isValid(s);
Console.WriteLine("Result" + result);
Console.ReadLine();
//textWriter.WriteLine(result);
//textWriter.Flush();
//textWriter.Close();
}
}
Special Palindrome
A string is said to be a special
palindromic string if
either of two conditions is met:
·
All of the
characters are the same, e.g. aaa.
·
All
characters except the middle one are the same, e.g. aadaa.
A special
palindromic substring is
any substring of a string which meets one of those criteria. Given a string,
determine how many special palindromic substrings can be formed from it.
For example, given the string s=mnonopoo , we have the following
special palindromic substrings:.
{m,n,o,n,o,p,o,o,non,ono,opo,oo}
Function
Description
Complete the substrCount function in the editor below.
It should return an integer representing the number of special palindromic
substrings that can be formed from the given string.
substrCount
has the following parameter(s):
·
n: an integer, the length of
string s
· s: a string
Input
Format
The first
line contains an integer, , the length of .
The second line contains the string .
The second line contains the string .
Constraints
Each character of the string is a lowercase alphabet, .
Output
Format
Print a single line containing the
count of total special palindromic substrings.
Sample
Input 0
5
asasd
Sample
Output 0
7
Explanation
0
The
special palindromic substrings of s=asasd are {a,s,a,s,d,asa,sas}
Sample
Input 1
7
abcbaba
Sample
Output 1
10
Explanation
1
The
special palindromic substrings of s=abcbaba are {},a,b,c,b,a,b,a,bcb,bab,aba
Sample
Input 2
4
aaaa
Sample
Output 2
10
Explanation
2
The
special palindromic substrings of s=aaaa are {a,a,a,a,aa,aa,aa,aaa,aaa,aaaa}
using System.CodeDom.Compiler;
using System.Collections.Generic;
using System.Collections;
using System.ComponentModel;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Runtime.Serialization;
using System.Text.RegularExpressions;
using System.Text;
using System;
class Solution
{
// Complete the substrCount function below.
static long substrCount(int n, string s)
{
int no = s.Length;
// store count of special
// Palindromic substring
int result = 0;
// it will store the count
// of continues same char
int[] sameChar = new int[no];
for (int v = 0; v < no; v++)
sameChar[v] = 0;
int i = 0;
// traverse string character
// from left to right
while (i < no)
{
// store same character count
int sameCharCount = 1;
int j = i + 1;
// count smiler character
while (j < no &&
s[i] == s[j])
{
sameCharCount++;
j++;
}
// Case : 1
// so total number of
// substring that we can
// generate are : K *( K + 1 ) / 2
// here K is sameCharCount
result += (sameCharCount *
(sameCharCount + 1) / 2);
// store current same char
// count in sameChar[] array
sameChar[i] = sameCharCount;
// increment i
i = j;
}
// Case 2: Count all odd length
// Special Palindromic
// substring
for (int j = 1; j < no; j++)
{
// if current character is
// equal to previous one
// then we assign Previous
// same character count to
// current one
if (s[j] == s[j - 1])
sameChar[j] = sameChar[j - 1];
// case 2: odd length
if (j > 0 && j < (no - 1) &&
(s[j - 1] == s[j + 1] &&
s[j] != s[j - 1]))
result += Math.Min(sameChar[j - 1],
sameChar[j + 1]);
}
// subtract all single
// length substring
return result;
// return result - no;
}
static void Main(string[] args)
{
// TextWriter textWriter = new StreamWriter(@System.Environment.GetEnvironmentVariable("OUTPUT_PATH"), true);
Console.WriteLine("Enter a number");
int n = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Enter a special string for palidrom count");
string s = Console.ReadLine();
long result = substrCount(n, s);
Console.WriteLine(result);
Console.ReadLine();
//textWriter.WriteLine(result);
//textWriter.Flush();
//textWriter.Close();
}
}
No comments:
Post a Comment